Monatshefte für Chemie 111, 1273--1285 (1980)

Monatshefte für Chemie

© by Springer-Verlag 1980

Transition Metal Chemistry of Oxime-Containing Ligands, IX.

Spectral and Magnetic Studies of Manganese(II) and Iron(III) Complexes of Pyridine-2-aldoxime and 6-Methylpyridine-2-aldoxime

Madan Mohan^a, *, Wahid U. Malik^b, Ram Dutt^a, and Anant K. Sirivastava^a

^a Department of Chemistry, N.R.E.C. College, Khurja (U.P.)-203131, India
 ^b Department of Chemistry, Roorkee University, Roorkee-247672, India

eparameter of chemistry, noorkee oniversity, noorkee-247072, ind

(Received 29 September 1978. Accepted 25 May 1979)

The vibrational (conventional and far-infrared) and diffuse-reflectance spectra in conjunction with magnetic susceptibility measurements over a temperature range down to liquid nitrogen temperature are reported and discussed for the complexes; $[Mn(HPOX)_2X_2]$; $[Mn(HMPX)_2X_2]_3$; $[Fe(HPOX)(POX)X_2]$ and $[Fe(HMPX)(MPX)X_2]$ (where HPOX = pyridine-2-aldoxime (C₆H₆N₂O); $POX = C_6H_5N_2O$; HMPX = 6-Methylpyridine-2aldoxime (C₇H₈N₂O); $MPX = C_7H_7N_2O$; $X = Cl, Br, I, NO_3, NCS, or OAc and$ $<math>X_2 = SO_4$). On the basis of these physical studies a six-coordinated structure is suggested for the manganese(II) and iron(III) complexes. *Mössbauer* spectra, measured at room-temperature and liquid nitrogen temperature also indicated a six-coordinate geometry for iron(III) complexes.

[Keywords: Diffuse-reflectance spectra; Iron(III) complexes; Magnetic susceptibility: Manganese(II) complexes; Vibrational spectra]

Übergangsmetallkomplexe mit Oxim-enthaltenden Liganden, IX. Spektroskopische und magnetische Untersuchungen von Mn(II)- und Fe(II)-Komplexen mit Pyridin-2-aldoxim und 6-Methylpyridin-2-aldoxim

Es wurden Komplexe von Pyridin-2-aldoxim (HPOX) und 6-Methylpyridin-2-aldoxim (HPOX) vom Typ [Mn(HPOX)₂X₂], [Mn(HMPX)₂X₂], [Fe(HPOX)(POX)X₂] und [Fe(HMPX)(MPX)X₂] (X = Cl. Br. I. NO₃, NCS, OAc; $X_2 = SO_4$) dargestellt. Die Diskussion erfolgt basierend auf Infrarotspektroskopie (inklusive fernes IR), Messungen der magnetischen Suszeptibilität (Temp. bis zu fl. N₂) und Mössbauer-Spektroskopie.

Introduction

Although aliphatic aldo- or keto-oximes transition metal complexes have been studied extensively¹ the complexes formed by aromatic aldoxime such as pyridine-2-aldoxime (HPOX) and 6-methylpyridine-2-aldoxime (HMPX), have received relatively little attention. In continuation of our previous reports^{2–9} on iron(II), cobalt(II), nickel(II), copper(II) and chromium(III) complexes of HPOX and HMPX, we report in this paper the results of our investigation on the isolation and characterization of Manganese(II) and iron(III) complexes of HPOX and HMPX.

Experimental

Materials: Manganese(II) and iron(III) salts, sodium iodide, ammonium thiocyanate (all reagent grade), pyridine-2-aldoxime and 6-methylpyridine-2-aldoxime (K&K Laboratories: Inc., New York) were used without further purification.

Synthesis of Complexes

Dihalogeno-bis (pyridine-2-aldoxime) manganese(II) and Dihalogeno-bis (6-methylpyridine-2-aldoxime) manganese(II): $Mn(L)_2X_2$ (L = HPOX or HMPX and X = Cl or Br): Stoichiometric quantities of $MnX_2 \cdot 4 H_2O$ (0.0025 mol) and ligand HPOX or HMPX (0.005 mol) were dissolved in ethanol and solutions were mixed while hot. A yellow precipitate formed immediately. It was filtered, washed with ethanol and diethylether and dried in a vacuum desiccator over P_4O_{10} .

Diiodo-bis (pyridine-2-aldoxime) manganese(II) and Diiodo-bis (6-methylpyridine-2-aldoxime) manganese(II): $Mn(L)_2I_2$ (L = HPOX or HMPX): These complexes were prepared as described above, except that MnI_2 was formed in situ by the double decomposition of $MnCl_2 \cdot 4 H_2O$ and NaI in ethanol. The precipitated NaCl was filtered and the solution of MnI_2 was used as in the preparation of $Mn(L)_2X_2$.

Dinitrato-bis (pyridine-2-aldoxime) manganese(II) and Dinitrato-bis (6methylpyridine-2-aldoxime) Manganese(II) $Mn(L)_2$ (NO₃)₂ (L = HPOX or HMPX): $Mn(NO_3)_2 \cdot 4 H_2O$ (0.0025 mol) was dissolved in ethanol and added slowly to hot ethanolic solution of ligand HPOX or HMPX. The solution, which immediately turned dark yellow, was stirred for several hours, the dark yellow solid was filtered and washed with copious amounts of diethylether and dried in a vacuum desiccator over P_4O_{10} .

Diisothiocyanato-bis (pyridine-2-aldoxime) manganese(II) and Diisothiocyanato-bis (6-methylpyridine-2-aldoxime) manganese(II): $Mn(L)_2(NCS)_2$ (L = HPOX or HMPX): An ethanolic solution of manganese thiocyanate (0.002 mol), prepared from $MnCl_2 \cdot 4 H_2O$ and NH_4SCN , was filtered into a solution of HPOX or HMPX (0.005 mol), in hot ethanol. The mixture was gently boiled for 30 min. The solid product was collected by filtration and washed with ethanol and diethylether and dried in a vacuum desiccator over P_4O_{10} .

Diacetato-bis(pyridine-2-aldoxime) manganese(II) and Diacetato-bis(6-methylpyridine-2-aldoxime) manganese(II) $Mn(L)_2OAc_2 (L = HPOX \text{ or } HMPX)$: $Mn(OAc)_2 \cdot H_2O (0.002 \text{ mol})$ was dissolved in minimum amount of water and ligand HPOX or HMPX (0.0045 mol) dissolved in hot ethanol was added. The resulting solution was refluxed for 30 min. On cooling the solution a light yellow precipitate was obtained immediately. The solid was filtered and washed well with water and then with ethanol and diethylether and dried in a vacuum desiccator over P_4O_{10} .

1274

Monosulphato-bis (pyridine-2-aldoxime) manganese(11) and Monosulphatobis(6-methylpyridine-2-aldoxime) manganese(11): $Mn(L)_2SO_4$ (L = HPOX or HMPX): $MnSO_4 \cdot H_2O$ (0.001 mol) was dissolved in water and refluxed for 15 min. The ligand HPOX or HMPX was dissolved in hot ethanol and added dropwise with continuous stirring to the hot metal salt solution. Crystallization occurred almost immediately. A light yellow solid was collected by filtration washed with water and then with ethanol and diethylether and dried in a vacuum desiccator over P_4O_{10} .

Dihalogeno-monohydrogen bis-(pyridine-2-aldoxime) iron(III) and Dihalogeno-monohydrogen bis-(6-methylpyridine-2-aldoxime) iron(III): $Fe(HPOX)(POX)X_2$ and $Fe(HMPX)(MPX)X_2$ (X = Cl, Br or I): A solution of $FeX_3 \cdot 6 H_2O$ (0.004 mol) in 50 ml of absolute ethanol was prepared and refluxed for 30 min. A solution of ligand HPOX or HMPX (0.008 mol) in 70 ml of absolute ethanol were prepared by heating and added very slowly to the metal salt solution. A red colour formed immediately, and a precipitate formed within minutes. The mixture was allowed to stand for 30 min and then heated to boiling and filtered hot via suction through a sintered glass. The precipitate was dried in a vacuum desiccator over P_4O_{10} .

Dinitrato-monohydrogen bis-(pyridine-2-aldoxime) iron(III) and Dinitrato-monohydrogen bis-(6-methylpyridine-2-aldoxime) iron(III): $Fe(HPOX)(POX)(NO_3)_2$ and $Fe(HMPX)(MPX)(NO_3)_2$: $Fe(NO_3)_2 \cdot 6 H_2O$ (0.005 mol) was dissolved in ethanol and added to an hot ethanolic solution of ligand HPOX or HMPX (0.01 mol) and left in the freezer overnight. A negligible amount of fine red precipitate came down and was filtered off. The filtrate was slowly evaporated on a steam bath, giving red crystals. The solid product was filtered, washed with small amount of ethanol and diethylether and dried in a vacuum desiccator over P_4O_{10} .

Diisothiocyanato-monohydrogen bis-(pyridine-2-aldoxime) iron(III) and Diisothiocyanato-monohydrogen bis-(6-methylpyridine-2-aldoxime) iron(III): $Fe(HPOX)(POX)(NCS)_2$ and $Fe(HMPX)(MPX)(NCS)_2$: A suspension of $Fe(HPOX)(POX)(NO_3)_2$ or $Fe(HMPX)(MPX)(NO_3)_2$ (0.01 mol) in absolute ethanol was treated with NH₄SCN (0.02 mol). The red solid turned into dark reddish-green on shaking the mixture. The product was filtered, washed with ethanol and diethylether and dried in a vacuum desiccator over P_4O_{10} .

Diacetato-monohydrogen bis-(pyridine-2-aldoxime) iron(III) andDiacetato-monohydrogen bis-(6-methylpyridine-2-aldoxime) iron(III): $Fe(HPOX)(POX)OAc_{2}$ $Fe(HMPX)(MPX)OAc_2$: and $Fe(OAc)_3 \cdot 6 H_2O$ (0.001 mol) was dissolved in a minimum amount of water and added to a ethanolic solution of ligand HPOX or HMPX (0.002 mol). The solution was then left in the freezer overnight. This yielded a thin dark film on the sides of the flask. The solution was filtered and filtrate left in the freezer for another week, giving well formed, dark red crystals. These crystals were collected, washed with small amount of ethanol and diethylether and dried in a vacuum desiccator over P_4O_{10} .

Monosulphato-monohydrogen bis-(pyridine-2-aldoxime) iron(III) and Monosulphato-monohydrogen bis (6-methylpyridine-2-aldoxime) iron(III): $Fe(HPOX)(POX)SO_4$ and $Fe(HMPX)(MPX)SO_4$: Ligand HPOX or HMPX(0.005 mol) in hot ethanol was added slowly to a solution of ferric sulphate hexahydrate (0.0025 mol) in 10 ml of water with constant stirring. A deep red solution was formed. The resulting solution was refluxed for 30 min, giving red crystals. The crystals were filtered, washed with water and then with ethanol and diethylether and dried in a vacuum desiccator over P_4O_{10} .

M. Mohan et al.:

Physical Measurements

All magnetic susceptibility measurements at various temperatures were made on polycrystalline samples on a standard *Gouy* balance. The susceptibility standard was HgCo(NCS)₄ and the sample temperature was measured with a copper-constant thermocouple. Diamagnetic corrections were made by using tables of *Pascal*'s constants¹⁰. The error limits for the reported magnetic moments are $\pm 0.05 \ \mu_{\rm eff}$ B.M.

Diffuse-reflectance spectra at room temperature were recorded by using Cary-14 spectrophotometer equipped with a diffuse reflectance accessory, using MgO as a reference. The infrared spectra in the range $4,000-200 \text{ cm}^{-1}$ were recorded on a Perkin-Elmer 180 spectrophotometer on samples in Nujol mulls and CsI disks.

Iron *Mössbauer* spectra were obtained on a polycrystalline samples by using a constant acceleration *Mössbauer* spectrometer which was calibrated with natural iron foil. The source was ⁵⁷Co(Pd) and was at room-temperature for all experiments. The low temperature results were measured in a vacuum cryostat with a sample holder which protected the sample from the cryostat vacuum. The *Mössbauer* results were determined by inspection with a accuracy of ± 0.01 mm/s.

All metal analyses were performed in this laboratory. Metals were analyzed by EDTA titrimetry¹¹ by using Erichrome Black T as an indicator¹² after decomposition of the complexes by a mixture of sulphuric acid and nitric acid. Halides were determined by *Volhard*'s method while nitrate was determined as its nitron salt¹³. The microanalyses of carbon, hydrogen and nitrogen was obtained through the kind courtesy of Micro-analytical Division of Aligarh Muslim University, Aligarh.

Results and Discussion

The analytical data for the present manganese(II) and iron(III) complexes were found satisfactory and reveal 1:2 (metal:ligand) stoichiometry for both manganese(II) and iron(III) complexes. All the present complexes were easily recrystallized from simple solvents but it was found that in general such recrystallization was not necessary and did not improve product purity. Likewise, the present complexes could be recovered unchanged after solution in specific solvents, such as acetone, acetonitrile and nitromethane. Small variations in reactant stochiometry ratios had no effect upon the product isolated. All complexes are stable at room-temperature and soluble in most common organic solvents except manganese(II) and iron(III) acetate and sulphate complexes but decomposes in aqueous solutions.

The magnetic susceptibilities for manganese(II) and iron(III) complexes have been measured over a temperature range down to liquid nitrogen temperature. The μ_{eff} B.M. values of the present complexes at room-temperature are in the range 5.80-5.90 (B.M.) expected for spinonly value for five-unpaired electrons, irrespective of whether the symmetry is octahedral, tetrahedral or lower¹⁴. Since manganese(II) and iron(III) complexes have orbitally non-degenerate 6S ground term spin-only magnetic of 5.92 (B.M.) independent of temperature are expected¹⁵. The magnetic susceptibilities of manganese(II) and iron(III) complexes over a temperature range down to liquid nitrogen temperature obey the *Curie-Weiss* law with relatively small value of θ , ruling out the possibility of antiferromagnetic interaction and contributions from terms other then the ground term ${}^{6}A_{1g}/(t^{3}_{2g}e_{g}^{2})$.

The *Mössbauer* spectrum of each of the iron(III) complexes has been measured at room and liquid nitrogen temperatures and exhibit the *Mössbauer* isomer shift ca. 0.64 mm/s^{-1} at room temperature and ca. 0.71 mm/s^{-1} at liquid nitrogen temperature. The high spin character of the present iron(III) complexes as evidenced by the magnetic data is further supported by these high values of the *Mössbauer* isomershift^{16, 17} and as expected show slight increase with decreasing temperature. The isomer-shift values are surprisingly constant from one compound to the next and indicate that a change in the anion group has little effect upon the s-electron density at the surface of the iron nucleus.

The diffuse-reflectance spectra of manganese(II) and iron(III) complexes have been measured at room-temperature and detailed spectral data and assignments are presented in Table 1. Assignments are reasonable for high-spin complexes in octahedral environment¹⁸. The crystal field parameters and nephelauxetic parameters (Dq, B, C and β), calculated using the methods described by Lever¹⁸, are recorded in Table 2, which confirms the octahedral environment of these complexes.

The infrared spectra of pyridine-2-aldoxime (HPOX) and 6-methylpyridine-2-aldoxime (HMPX) differ from those of the common oximes. which show a v_{OH} broad band at $3,250 \text{ cm}^{-1}$. This v_{OH} broad band is replaced by multiple bands between 3,194 and $2,791 \text{ cm}^{-1}$ in HPOX and HMPX, the strongest of these lying around $2,791 \,\mathrm{cm}^{-1}$. This implies a much stronger hydrogen bonding in HPOX and HMPX than in other oximes. The band assigned to $\nu C = N$ (acyclic) at 1,520 cm⁻¹ in HPOX and HMPX is considerably lower than normal. This lowering is attributed to the structure of type (I) in which the oxime proton is partially ionised. This lowering effect is further verified by a study of potassium salts of these ligands, where the $\nu C = N$ (acyclic band) was observed at ca. 1.517 cm^{-1} . The infrared spectra of HPOX and HMPXexhibit four ring-stretching frequencies in between 1,600-1,400 cm⁻¹; the ring-breathing mode at ca. $980 \,\mathrm{cm}^{-1}$; the vN-O stretching frequency at ca. $950\,\mathrm{cm}^{-1}$; an out-of-place CH deformation at ca. $810 \,\mathrm{cm^{-1}}$, a skeletol mode at ca. $730 \,\mathrm{cm^{-1}}$ and an out-of-plane deformation band at ca. $400 \,\mathrm{cm}^{-1}$.

M. Mohan et al.:

Table 1. Electronic absorption spectra of $\rm Mn^{2+}$ and $\rm Fe^{3+}$

Assignment	$Mn(HPOX)_2Cl_2$	$Mn(HPOX)_2Br_2$	$Mn(HPOX)_2I_2$	
${}^{6}A_{1\alpha} \rightarrow {}^{4}T_{1\alpha}(G)$	16,600	16,240	16,125	
$^{18} \rightarrow {}^{4}T_{2\alpha}^{16}(G)$	21,060	20,760	20,657	
$\rightarrow {}^{4}A_{1\alpha}^{2\alpha}, {}^{4}E_{\alpha}(G)$	23,290	23,095		
18, 8, ,	24,680	24.398	24,410	
$\rightarrow {}^{4}T_{2\alpha}(D)$	27,835	27,591	27,566	
$\rightarrow 4 \mathbf{E}_{a}^{2g}(\mathbf{D})$	28,980	28,736	28,740	
5` '	·	33.557 CT*	$33,602{\rm CT}*$	
		$34.557\mathrm{CT*}$, ·	
	$35.890\mathrm{CT}*$	- ,		
		$36.965\mathrm{CT*}$	$37.020\mathrm{CT}$	
	$40{,}890\mathrm{CT*}$	$41,\!495\mathrm{CT}*$	$42,020\mathrm{CT}*$	

Assignment	$Mn(HMPX)_2Cl_2$	$Mn(HMPX)_2Br_2$	$Mn(HMPX)_2I_2$
6A 4T (C)	16 610	16 995	15 940
$\rightarrow 4T_{2}(G)$	21 300	20 942	20 647
$\rightarrow {}^{4}A_{1a}, {}^{4}E_{a}(G)$	23,625	23,420	24,308
18, 8, ,	24,530	24,272	, -
$\rightarrow {}^{4}T_{2\alpha}(D)$	26,460	26,210	26,244
$\rightarrow 4 E_{\alpha}^{-6}(D)$	29,040	28,818	28,826
6`´		$33,557\mathrm{CT}$	$33,\!608\mathrm{CT}$
	$35,820\mathrm{CT}$	$35,714\mathrm{CT}$	$36,776\mathrm{CT}$
	$40,890\mathrm{CT}$	$41,322\mathrm{CT}$	$42,\!080\mathrm{CT}$
	$45,\!980\mathrm{CT}$	$47,\!619\mathrm{CT}$	$46{,}890\mathrm{CT}$

Assignment	Fe(HPOX)(POX)Cl ₂	$Fe(HPOX)(POX)Br_2$	Fe(HPOX)(POX)I ₂
$^{6}A_{1\alpha} \rightarrow {}^{4}T_{1\alpha}(G)$	13,635	13,700	13,674
$^{1g} \rightarrow {}^{4}T_{2g}^{1g}(G)$	18,695	18,870	18,872
$\rightarrow {}^{4}A_{1\alpha}^{2g} {}^{4}E_{\alpha}(G)$	$25,\!350$	25,460	25,500
$\rightarrow 4T_{2\alpha}^{1g}(D)^{g}$	28,594	28,810	28,870
$\rightarrow 4 E_{a}^{2g}(D)$	30,110	30,330	30,400
5 '		$32,000\mathrm{CT}$	$32,051\mathrm{CT}$
	$35,980\mathrm{CT}$	$36,380\mathrm{CT}$	$36,364\mathrm{CT}$
	,		$37,736\mathrm{CT}$
	$40,795\mathrm{CT}$	$38,040\mathrm{CT}$	
	·	$45,\!980\mathrm{CT}$	$44,\!643\mathrm{CT}$

$Mn(HPOX)_2(NO_3)_2$	$Mn(HPOX)_2(NCS)_2$	$Mn(HPOX)_2OAc_2$	Mn(HPOX) ₂ SO ₄
16 300	16 610	18 285	17.050
20,870	21,286	22,620	21,395
24,741	25,187	25,926	24,895
26,610	27,100	$27,\!695$	26,670
29,100	29,660	30,060	29,036
$34,080\mathrm{CT}$	$35,715\mathrm{CT}$		$32,026\mathrm{CT}$
38.040 CT	$39.685\mathrm{CT}$	38.880 CT	37.092 CT
40.090 CT	40.486 CT	40.996 CT	39 892 CT
42.040 CT		42.260 CT	41 190 CT
$45,900\mathrm{CT}$	$45{,}870\mathrm{CT}$	45,920 CT	46,020 CT
$Mn(HMPX)_{0}(NO_{3})_{2}$	$Mn(HMPX)_{o}(NCS)_{o}$	Mn(HMPX)00Aco	Mn(HMPX) ₂ SO ₄
16,198	16,142	16,652	16,754
20,950	20,950	21,070	21,196
24,595	24,788	24,233	24,298
26,552	26,764	26,051	26,125
29,159	29,399	28,473	28,566
$34,107\mathrm{CT}$	$35,\!695\mathrm{CT}$		$35,700\mathrm{CT}$
$37,805\mathrm{CT}$	$38,970\mathrm{CT}$	$38,\!598\mathrm{CT}$	$37,600\mathrm{CT}$
$40,055\mathrm{CT}$	$40,\!550\mathrm{CT}$	$40,980\mathrm{CT}$	39.992 CT
$40,126\mathrm{CT}$	$44,082\mathrm{CT}$		<i>,</i>
$46,\!798\mathrm{CT}$	$46,\!626\mathrm{CT}$	$47,020\mathrm{CT}$	46,982 CT

complexes (all values in cm^{-1} ; CT = Charge Transfer band)

$Fe(HPOX)(POX)(NO_3)_2$	$Fe(HPOX)(POX)(NCS)_2$	$\mathrm{Fe}(\mathrm{H}POX)(POX)\mathrm{O}Ac_2$	$Fe(HPOX)(POX)SO_4$
13,814	13,924	13,680	13,657
19,185	19,393	18,666	18,628
25,825	26,105	25,190	25,130
29,350	29,700	28,384	28,316
30,900	31,270	29,880	29.806
$31,980\mathrm{CT}$		$32,051\mathrm{CT}$	$32,162\mathrm{CT}$
$36,400\mathrm{CT}$	$36,\!418\mathrm{CT}$	36,101 CT	35.987 CT
$37,980\mathrm{CT}$	$38,126\mathrm{CT}$		
45,480 CT	$45,\!328\mathrm{CT}$	$44,\!248\mathrm{CT}$	44,210 CT

Assignment	$Fe(HMPX)(MPX)Cl_2$	$Fe(HMPX)(MPX)Br_2$	${ m Fe}({ m H}MPX)(MPX){ m I}_2$
$^{6}A_{1\alpha} \rightarrow {}^{4}T_{1\alpha}(G)$	13.865	13.825	13,965
$^{1g} \rightarrow {}^{4}T_{2g}^{1g}(G)$	19,188	19,150	19,350
$\rightarrow 4 A_{1g}^{2g} 4 E_{g} (G)$	25,340	25,325	25,460
$\rightarrow {}^{4}T_{2\alpha}^{1g}(D)^{g}$	28,890	28,874	29,000
$\rightarrow 4 E_{\alpha}^{2g}(D)'$	30.380	30.365	30.570
gʻ /	·		$36,380\mathrm{CT}$
			$38,556\mathrm{CT}$
	$42,200\mathrm{CT}$	$42.132\mathrm{CT}$	$42,132\mathrm{CT}$
	,	$46,272\mathrm{CT}$	$46,\!272\mathrm{CT}$

Table 1 (continued)

Table 2. Crystal field parameters of Mn^{2+} and Fe^{3+} complexes of HPOX and HMPX (all values in cm^{-1})

Compound	Dq	В	C	g*
$M_{\rm P}({\rm H} PO {\rm Y})$ Cl	1002.0	614.9	2707.4	0.6307
$M_{n}(HPOY) B_{r}$	1092.9	616.2	3650.0	0.0397
Mn(HPOY) I	1102.0	618 5	3645.0	0.6449
$Mn(HPOX)_{212}$ $Mn(HPOX) (NO_{-})$	1194.6	623.0	3702.0	0.6480
Mn(HPOY) (NOS)	1141.9	628 7	3760.0	0.0465
$Mn(HPOY) \cap Ac$	1070.8	500.0	4004.0	0.0055
Mn(HPOY) SO	1070.8	502.0	2705.0	0.0152
Mn(HMPX) Cl	1050.0	532.0 644 9	3617 5	0.0100
Mn(HMPX) Br	1056.0	640.2	3555.0	0.676
Mn(HMPX) I	1005.0	645.4	3570.8	0.070
Mn(HMPX) (NO)	1100.8	659.0	3615.0	0.670
Mn(HMPX) (NCS)	1100.8	659.9	3640.0	0.075
$Mn(HMPX) \cap Ac$	1028.0	605.8	3625.0	0.000
Mn(HMPY) SO	1026.9	600.8	3640.0	0.635
$\mathbf{F}_{2}(\mathbf{H} \mathbf{P} \mathbf{O} \mathbf{Y}) (\mathbf{P} \mathbf{O} \mathbf{Y})^{(1)}$	1460.9	680.0	2710.0	0.035
$\mathbf{F}_{0}(\mathbf{H} \mathbf{D} \mathbf{O} \mathbf{X}) (\mathbf{D} \mathbf{O} \mathbf{X}) \mathbf{D}_{12}$	1460.2	606.9	2700.0	0.525
$\mathbf{F}_{\mathbf{C}}(\mathbf{H} \mathbf{P} \mathbf{O} \mathbf{X})(\mathbf{P} \mathbf{O} \mathbf{X})\mathbf{I}$	1465.9	700.0	2700.0	0.555
$\mathbf{Fe}(\mathbf{\Pi} \mathbf{F} \mathbf{O} \mathbf{A})(\mathbf{F} \mathbf{O} \mathbf{A})\mathbf{I}_{2}$ $\mathbf{Fe}(\mathbf{\Pi} \mathbf{F} \mathbf{O} \mathbf{X})(\mathbf{D} \mathbf{O} \mathbf{X})(\mathbf{N} \mathbf{O} \mathbf{X})$	1400.0	700.0	3700.0 2715 0	0.555
$Fe(\Pi FOA)(FOA)(NO_3)_2$	1400.4	720.0	5715.U 2745 0	0.007
$Fe(\Pi POA)(POA)(NOS)_2$ $Fe(\Pi POX)(POX)(AOS)_2$	1498.2	138.4	3743.U 2609.0	0.507
$Fe(HPOX)(POX)OAc_2$	1440.0	670.2	3698.0	0.010
$Fe(HPOX)(POX)SO_4$	1435.5	008.0 700.4	3090.0	0.513
$Fe(HMPX)(MPX)Cl_2$	1415.4	720.4	3628.0	0.554
$Fe(HMPX)(MPX)Br_2$	1418.0	720.6	3625.0	0.554
$Fe(HMPX)(MPX)I_2$	1415.0	730.0	3632.0	0.301
$Fe(HMPX)(MPX)(NO_3)_2$	1448.9	750.8	3656.0	0.577
$Fe(HMPX)(MPX)(NCS)_2$	1402.0	758.2	3659.0	0.583
$Fe(HMPX)(MPX)OAc_2$	1400.00	700.0	3610.0	0.538
$Fe(HMPX)(MPX)SO_4$	1396.7	695.0	3600.0	0.534

* Free ion B_o value taken in $\rm Mn^{2+}=960\,\rm cm^{-1}$ and in $\rm Fe^{3+}=1,300\,\rm cm^{-1}$

Fe(HMPX)(MPX)(NO ₃) ₂	Fe(HMPX)(MPX)(NCS) ₂	$Fe(HMPX)(MPX)OAc_2$	$Fe(HMPX)(MPX)SO_4$
13,945	13,895	13,750	13,685
19,485	19,490	18,930	18,830
25,780	25.870	25,000	24,950
29,500	29.635	28,480	28,350
31,000	31,180	29,950	29,815
$36.370\mathrm{CT}$	$36.364\mathrm{CT}$	$35.714\mathrm{CT}$	$35,\!628\mathrm{CT}$
$38.425\mathrm{CT}$	$28.023\mathrm{CT}$	$38.023\mathrm{CT}$	$38,040\mathrm{CT}$
42.128 CT		42.016 CT	$42.182\mathrm{CT}$
$46,268\mathrm{CT}$	$45,249\mathrm{CT}$	×	$45,300\mathrm{CT}$

Krause et al.¹⁹ have extensively investigated transition metal complexes of pyridine-2-aldoxime in vC = N (acyclic) and vN—O regions and postulated that complexes containing unionized oxime proton have vC = N (acyclic) and vN - O stretching frequencies in the range 1,654-1,614 cm⁻¹ and 1,069-1.036 cm⁻¹; respectively. Whereas the complexes containing ionized oxime proton (the oxime may or may not be hydrogen bonded) have $\nu C = N$ (acyclic) and νN —O stretching frequencies in the range $1.556-1.526 \text{ cm}^{-1}$ and $1.150-1.041 \text{ cm}^{-1}$, respectively. The present manganese(II) complexes of HPOX and HMPX exhibit the bands at ca. 3,250; ca. 1,660 and ca. 1,074 cm⁻¹ which can be assigned to vOH, vC=N (acyclic) and vN-O stretching frequencies. respectively. These data in manganese(II) complexes show that oxime proton is unionized and there is a contribution from the -C = N - OHgroups. Whereas the iron(III) complexes of HPOX and HMPX possess the vC = N (acyclic) band at ca. 1,550 cm⁻¹ and the vN—O band at ca. 1,130 cm⁻¹. No vOH stretching band is observed in these iron(III) complexes. These results indicate that oxime proton of one HPOXor HMPX is heterolysed and there is a contribution from $-C = N - O \dots HO - N = C$ -grouping in these iron(III) complexes.

The infrared spectra of dihydrogen (containing -C = N - OHgroups) and monohydrogen (containing -C = N - O - N = C-

⁸⁴ Monatshefte für Chemie, Vol. 111/6

groups) metal complexes have weak absorption bands at ca. 1,700 and ca. 1,600 cm⁻¹, respectively. These bands are assigned to OH stretching of the intramolecularly hydrogen bonded oxime OH groups²⁰.

The infrared spectra of the present complexes exhibit the four v(C=C), v(C=N), skeletal frequencies in the following ranges; Band I; 1,620-1,600 cm⁻¹; Band II; 1,575-1,565 cm⁻¹; Band III; 1,490-1,482 cm⁻¹ and Band IV; 1,440-1,430 cm⁻¹. Band I shows a significant increase in frequency from its free ligand value of ca. 1,570 cm⁻¹, an indication of pyridine coordination to metal atom²¹. The ring-breathing mode observed at ca. 980 cm⁻¹ in the free ligands disappears in the complexes and is replaced by a band at ca. 1,020 cm⁻¹. This shift is also an indication of pyridine coordination to metal atom²², 23.

Two strong bands are observed in the spectrum of free ligands HPOX and HMPX at ca. 810 and ca. 730 cm⁻¹, which may be assigned to γ (C—H) and (C—C), respectively²⁴. The ca. 730 cm⁻¹ bond splits into two components lying between 718 and 752 cm⁻¹. This splitting is also believed to be an indication of pyridine-coordination to metal atom^{23, 25}. The band observed at ca. 810 cm⁻¹ in free HPOX and HMPX ligands disappears in their manganese(II) and iron(III) complexes and is observed as a single band lying between 780 and 824 cm⁻¹ in the complexes.

The free ligands, HPOX and HMPX, exhibit a band at ca. 400 cm⁻¹ assigned to the C—C out-of-plane deformation^{24, 25}, while all the present complexes exhibit a single band at ca. 412 cm⁻¹. An increase in frequency upon coordination of pyridine to metal atom is to be expected²⁶.

These data leave little doubt that in the present manganese(II) and iron(III) complexes the ligands HPOX and HMPX are coordinated to the metal ion via pyridine nitrogen and oxime nitrogen atoms.

The infrared spectra of nitrato complexes of manganese(II) and iron(III) with HPOX and HMPX exhibit bands at ca. 1,290; ca. 1,020; ca. 740; ca. 1,430; ca. 720 and ca. 820 cm⁻¹ which can be assigned²⁷⁻²⁹ to NO₂ symmetric stretching (v₁); N—O stretching (v₂); NO₂ symmetric banding (v₃); NO₂ asymmetric stretching (v₄); NO₂ asymmetric bending (v₅) and out-of-plane rocking; respectively. These frequencies are compatible with monodentately coordinated nitrate groups. The infrared spectra of these complexes also shows weak bands at ca. 1,730; 1,750; and at ca. 2,295 and ca. 2,410 cm⁻¹ which can be assigned to the combination bands of (v₁ + v₄) and (v₁ + v₃)²⁷; respectively. The energy separation of the frequencies of (v₁ + v₄) is ca. 22 cm⁻¹ and that of (v₁ + v₃) is ca. 125 cm⁻¹, which also confirms the monodentate nature of the nitrate group^{27, 28}. The thiocyanato complexes show bands at ca. 2,045; ca. 485; and ca. 810 cm⁻¹ assignable³⁰ to C—N stretching (ν_1) ; NCS bending (ν_2) and C—S stretching (ν_3) , respectively. These frequencies corroborates the presence of N-bonded thiocyanate³⁰ group in the present thiocyanato complexes.

The acetato complexes of manganese(II) and iron(III) complexes exhibit two bands at ca. 1,650 and ca. 1,390 cm⁻¹ which can be assigned³¹⁻³³ to ν COO asymmetric and ν COO symmetric vibrations, respectively. These vibrational band values are intermediate between those observed for purely ionic and covalent acetate molecules^{34, 35}, indicating the metal-oxygen bond is moderately covalent³¹⁻³³.

In the infrared spectra of sulphato complexes bands are observed at ca. 1,135; ca. 1,100; ca. 1,050; ca. 900; ca. 680; ca. 600; and ca. 450 cm⁻¹ which may be assigned to coordinated sulphate group^{36,37}. The occurrence of HPOX and HMPX ligand vibrational bands in these regions allows only tentatively assignment of individual bands to sulphate vibrations. The vS—O band, however, occurs in a region of the spectrum free of organic ligand bands and can therefore be assigned with certainty. In these sulphato complexes this band occurs at ca. 990 cm⁻¹ which suggests³⁷ bidentate as opposed to monodentate coordination of sulphate group in the present complexes.

The free ligands exhibit the medium to strong far-infrared absorption bands at ca. 400; ca. 385; ca. 300 and ca. 220 cm^{-1} . Whereas all the present complexes have bands of varying intensity at ca. 400; ca. 380; ca. 300 and ca. 220 cm^{-1} , which corresponds to medium to strong bands in this region in the free ligand spectrum.

The far-infrared spectra of manganese(II) complexes of HPOX and HMPX exhibit a strong band at ca. 250 cm^{-1} and a shoulder at ca. 215 cm^{-1} which can be assigned to M—N vibrations³²⁻⁴² for manganese(II) complexes. For iron(III) complexes similar $\vee M$ —N vibrations³⁸⁻⁴² are observed at ca. 375 and ca. 364 cm⁻¹. The bands occurring at ca. 320 and ca. 350 cm⁻¹ are assigned to $\vee M$ —O in nitrato- and acetato-complexes of manganese(II) complexes.

The bands appearing at ca. 270 and ca. 260 cm^{-1} are assigned to $\vee M$ —Cl and $\vee M$ —NCS vibrations, respectively, in manganese(II) complexes. No $\vee M$ —Br and $\vee M$ —I vibrations are observed down to 200 cm^{-1} in manganese(II) complexes, indicating that these vibrations occur below 200 cm^{-1} . The $\vee M$ —Cl, $\vee M$ —Br, $\vee M$ —I and $\vee M$ —NCS vibrations in iron(III) complexes are observed at ca. 380; ca. 300; ca. 230 and ca. 341 cm⁻¹ respectively. The stereochemistry of a large number of four- and six-coordinate complexes has been assigned³⁸ on the basis of the metal-ligand (particularly metal halide) stretching frequencies. The M—X₂ complexes can conform either to C_{2v} or D_{4h}

point group symmetry. In C_{2v} symmetry, two $\vee M - X$ vibrations are expected while in D_{4h} point only one $\vee M - X$ vibrations are observed^{43,44}. The present manganese(II) and iron(III) complexes exhibit only one $\vee M - X$ vibration indicating that anions are present in *trans*position⁴⁵ to each other in D_{4h} point group symmetry.

Acknowledgement

We are thankful to Dr. P. C. Gupta, Principal, N.R.E.C. College, Khurja for providing laboratory facilities and Prof. Dr. K. P. Gopinathan, Materials Science Laboratory, Reactor Research Centre, Kalpakkam, Tamilnadu for *Mössbauer* spectral measurements. Financial support to R. Dutt by U.G.C. New Delhi is gratefully acknowledged.

References

- ¹ A. Chakravorty, Coordn. Chem. Rev. 13, 1 (1974).
- ² M. Mohan, H. C. Khera, S. G. Mittal, and A. K. Sirivastava, Acta Chim. (Hungary) 91, 417 (1976).
- ³ M. Mohan, H. C. Khera, S. G. Mittal, and A. K. Sirivastava, Curr. Sci. 46, 211 (1977).
- ⁴ M. Mohan, S. G. Mittal, H. C. Khera, and A. K. Sirivastava, Indian J. Chem. 15 A, 696 (1977).
- ⁵ M. Mohan, S. G. Mittal, H. C. Khera, and A. K. Sirivastava, Gazz. Chim. Italiana 107, 393 (1977).
- ⁶ M. Mohan, S. G. Mittal, H. C. Khera, and A. K. Sirivastava, Gazz. Chim. Italiana 108, 585 (1978).
- ⁷ M. Mohan, S. G. Mittal, H. C. Khera, and A. K. Sirivastava, Mh. Chem. 109, 357 (1978).
- ⁸ M. Mohan, S.G. Mittal, H.C. Khera, and A.K. Sirivastava, Mh. Chem. **111**, 63 (1980).
- 9 M. Mohan, S. G. Mittal, H. C. Khera, and A. K. Sirivastava, Gazz. Chim. Italiana 109, 65 (1979).
- ¹⁰ F. E. Mabbs and D. J. Machin, Magnetism and Transition Metal Complexes, p. 5. London: Chapman and Hall. 1973.
- ¹¹ G. Schwarzenbach and H. Flaschka, Complexometric Titrations. London: Methuen. 1969.
- ¹² F. J. Welcher, The Analytical Uses of E.D.T.A. New York: Van Nostrand. 1958.
- ¹³ A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, p. 266. London: Longmans. 1961.
- ¹⁴ B. N. Figgis and J. Lewis, Prog. Inorg. Chem. 6, 102 (1964).
- ¹⁵ R. J. Collin and L. F. Larkworthy, J. Inorg. Nucl. Chem. 37, 334 (1975).
- ¹⁶ N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy, p.161. London: Chapman and Hall. 1971.
- ¹⁷ E. Fluck, Chemical Applications of *Mössbauer* Spectroscopy (V. I. Goldanskii and R. H. Herber, eds.), p. 270. New York-London: Academic Press. 1968.
- ¹⁸ A. B. P. Lever, Inorganic Electronic Spectroscopy, p. 292. Amsterdam: Elsevier. 1968.

1284

- ¹⁹ R. A. Krause, N. B. Colthup, and D. H. Busch, J. Phys. Chem. 65, 2216 (1961).
- ²⁰ A. Fujita, A. Nakahara, and R. Tsuchido, J. Chem. Phys. 23, 1541 (1955).
- ²¹ P. E. Figgins and D. H. Busch, J. Phys. Chem. 65, 2236 (1961).
- ²² S. P. Sinha, Spectrochim. Acta 20, 879 (1964).
- ²³ J. H. S. Green, W. Kynaston, and H. M. Paisley, Spectrochim. Acta 19, 549 (1963).
- ²⁴ N. S. Gill and H. J. Kingdon, Austral. J. Chem. 19, 2197 (1966).
- ²⁵ G. Zerbi, J. Overend, and B. Grawford, J. Chem. Phys. 38, 122 (1963).
- ²⁶ N. S. Gill, R. H. Nuttall, D. E. Scaife, and D. W. A. Sharp, J. Inorg. Nucl. Chem. 18, 79 (1961).
- ²⁷ N. F. Curtis and Y. M. Curtis, Inorg. Chem. 4, 807 (1965).
- ²⁸ B. M. Gatehouse, S. E. Livingstone, and R. S. Nyholm, J. Chem. Soc. 1957, 4222.
- ²⁹ A. B. P. Lever, E. Mantovani, and B. S. Ramaswamy, Canad. J. Chem. 44, 1957 (1971).
- ³⁰ J. L. Burmeister, Coordn. Chem. Rev. 1, 205 (1966); 3, 225 (1968).
- ³¹ K. Nakamoto, Y. Morimoto, and A. E. Martell, J. Amer. Chem. Soc. 83, 4528 (1961).
- ³² A. B. P. Lever, J. Lewis, and R. S. Nyholm, J. Chem. Soc. 1962, 5262.
- ³³ A. B. P. Lever and D. Ogden, J. Chem. Soc. A 1967, 2041.
- ³⁴ K. Itoh and H. J. Bernstein, Canad. J. Chem. 34, 170 (1956).
- ³⁵ W. Welter, jr., J. Amer. Chem. Soc. 77, 3941 (1955).
- ³⁶ K. Nakamoto, J. Fujita, S. Tanaka, and M. Kobayashi, J. Amer. Chem. Soc. 79, 4904 (1957).
- ³⁷ A. Hazel and S. D. Ross, Spectrochim Acta. 24 A, 985 (1968).
- ³⁸ R. J. H. Clark and C. S. Williams, Inorg. Chem. 4, 350 (1965).
- ³⁹ C. W. Frank and L. B. Rogers, Inorg. Chem. 5, 615 (1966).
- ⁴⁰ J. Burgress, Spectrochim. Acta **24 A**, 277 (1968).
- ⁴¹ R. J. H. Clark and C. S. Williams, Spectrochim. Acta 23 A, 1055 (1967).
- ⁴² R. G. Inskeep, J. Inorg. Nucl. Chem. 24, 763 (1962).
- ⁴³ A. B. P. Dever and E. Mantovani, Inorg. Chem. 10, 817 (1971).
- 44 A. B. P. Lever and B. P. Kennedy, Canad. J. Chem. 50, 3488 (1972).
- ⁴⁵ K. Nakamoto, Infrared Spectral of Inorganic and Coordination Compounds, p. 215. New York: Wiley-Interscience. 1970.